跳转至

知识点总结

Info

Basic

Equivalent Statements

If \(A\) is an \(n \times n\) matrix, then the following statements are equivalent.

  1. \(A\) is invertible.
  2. \(A\mathbf{x} = 0\) has only the trivial solution.
  3. The reduced row echelon form of \(A\) is \(I_n\).
  4. \(A\) is expressible as a product of elementary matrices.
  5. \(A\mathbf{x} = \mathbf{b}\) is consistent for every \(n \times 1\) matrix \(\mathbf{x}\).
  6. \(A\mathbf{x} = \mathbf{b}\) has exactly one solution for every \(n \times 1\) matrix \(b\).
  7. \(\det(A) \neq 0\).
  8. The column vectors of \(A\) are linearly independent.
  9. The row vectors of \(A\) are linearly independent.
  10. The column vectors of \(A\) span \(R_n\).
  11. The row vectors of \(A\) span \(R_n\).
  12. The column vectors of \(A\) form a basis for \(R_n\).
  13. The row vectors of \(A\) form a basis for \(R_n\).
  14. \(A\) has rank \(n\).
  15. \(A\) has nullity \(0\).
  16. The orthogonal complement of the null space of \(A\) is \(R^n\).
  17. The orthogonal complement of the row space of \(A\) is \(\{0\}\).
  18. The kernel of \(T_A\) is \(\{0\}\).
  19. The range of \(T_A\) is \(R^n\).
  20. \(T_A\) is one-to-one.
  21. \(\lambda = 0\) is not an eigenvalue of \(A\).
  22. \(A^{T}A\) is invertible.

Eigenvalues and Eigenvectors

If \(A\) is an \(n \times n\) matrix, and

\[Ax = \lambda x\]

for some scalar \(\lambda\), then the scalar \(\lambda\) is called an eigenvalue of \(A\) (or of \(T_A\)), and \(x\) is said to be an eigenvector corresponding to \(\lambda\).

If \(A\) is an \(n \times n\) matrix, then \(\lambda\) is an eigenvalue of \(A\) if and only if it satisfies the equation

\[\det\left(\lambda I − A \right) = 0\]

This is called the characteristic equation of A.

Best Approximation

If \(A\mathbf{x} = \mathbf{b}\) is an inconsistent linear system,

\[A^{T}A\mathbf{x} = A^{T}\mathbf{b}\]

Matrix Transformations

Quadratic Forms

\[Q_{A}(\mathbf{x}) = \mathbf{x}^{T}A\mathbf{x}\]
  • If \(P\) orthogonally diagonalizes \(A\), let \(\mathbf{x} = P\mathbf{y}\), in which \(A = PDP^T\), we have:
\[\begin{aligned} \mathbf{x}^{T}A\mathbf{x} = \mathbf{y}^{T}D\mathbf{y} &= \begin{bmatrix} y_1 & y_2 &\dots & y_n\end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n\end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \\ &= \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{n}y_{n}^{2} \end{aligned}\]

Decompositions

Diagonalization

\[A = PDP^{-1}\]
  • \(P = \begin{bmatrix} \mathbf{p}_{1} & \mathbf{p}_{2} & \dots & \mathbf{p}_{n}\end{bmatrix}\) and \(D = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n\end{bmatrix}\)

  • \(\mathbf{p}_{i}\) are eigenvectors corresponding to \(\lambda_{i}\)

QR Decomposition

Gram–Schmidt Process

\(Step\) 1. Let \(\mathbf{v}_{1} = \mathbf{u}_{1}\).

\(Step\) 2. Compute the component of \(\mathbf{u}_{2}\) that is orthogonal to the space \(W_{1}\) spanned by \(\mathbf{v}_{1}\).

\[\mathbf{v}_{2} = \mathbf{u}_{2} - proj_{W_{1}} \mathbf{u}_{2} = \mathbf{u}_{2} - \frac{\left\langle\mathbf{u}_{2},\mathbf{v}_{1}\right\rangle}{\left\lVert\mathbf{v}_{1}\right\lVert^{2}} \mathbf{v}_{1}\]

\(Step\) 3. Also, compute the component of \(\mathbf{u}_{3}\) that is orthogonal to the space \(W_{1}\) spanned by \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\).

\[\mathbf{v}_{3} = \mathbf{u}_{3} - proj_{W_{2}} \mathbf{u}_{3} = \mathbf{u}_{3} - \frac{\left\langle\mathbf{u}_{3},\mathbf{v}_{1}\right\rangle}{\left\lVert\mathbf{v}_{1}\right\lVert^{2}} \mathbf{v}_{1} - \frac{\left\langle\mathbf{u}_{3},\mathbf{v}_{2}\right\rangle}{\left\lVert\mathbf{v}_{2}\right\lVert^{2}} \mathbf{v}_{2}\]

QR Decomposition

\[A = QR\]
  • \(A = \begin{bmatrix}\mathbf{u}_{1} \vert \mathbf{u}_{2} \vert \cdots \vert \mathbf{u}_{n} \end{bmatrix}\) and \(Q = \begin{bmatrix}\mathbf{q}_{1} \vert \mathbf{q}_{2} \vert \cdots \vert \mathbf{q}_{n} \end{bmatrix}\)

  • \(R = \begin{bmatrix} \left\langle\mathbf{u}_1, q_1\right\rangle & \left\langle\mathbf{u}_2, q_1\right\rangle & \cdots & \left\langle\mathbf{u}_n, q_1\right\rangle \\ 0 & \left\langle\mathbf{u}_2, q_2\right\rangle & \cdots & \left\langle\mathbf{u}_n, q_2\right\rangle \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \left\langle\mathbf{u}_n, q_n\right\rangle \end{bmatrix}\)

Orthogonally diagonalization

\[A = PDP^{T}\]
  • Applying the Gram–Schmidt process to \(\begin{bmatrix} \mathbf{u}_{1}, \mathbf{u}_{2}, \dots, \mathbf{u}_{n}\end{bmatrix}\), we can get \(P = \begin{bmatrix} \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{n}\end{bmatrix}\)

  • \(D = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n\end{bmatrix}\)

Tip

\(P\) is an orthogonal matrix, that is, \(P^{-1} = P^{T}\).

Singular Value Decomposition

If \(A\) is an \(m \times n\) matrix, and if \(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}\) are the eigenvalues of \(A^{T}A\), then the numbers

\[\sigma_{1} = \sqrt{\lambda_{1}},\quad\sigma_{2} = \sqrt{\lambda_{2}},\quad\dots ,\quad\sigma_{n} = \sqrt{\lambda_{n}}\]

are called the singular values of \(A\).

\[A = U \Sigma V^{T}\]
  • \(U = \begin{bmatrix} \mathbf{u}_{1}, \mathbf{u}_{2}, \dots, \mathbf{u}_{n}\end{bmatrix}, V = \begin{bmatrix} \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{n}\end{bmatrix}\)

  • \(\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_n\end{bmatrix}\)

Tip

If \(A\) is not a square matrix (\(e.g.\) an \(m \times n\) matrix), then \(\Sigma\) needs to extent into an \(m \times n\) matrix.

评论