跳转至

反常积分和含参变量积分

反常积分

  • \(\displaystyle F(A)=\int_a^Af(x)\text{d}x\),定义无穷积分 \(\displaystyle \int_a^{+\infty}f(x)\text{d}x = \lim_{A\to +\infty}F(A)\)

  • \(\displaystyle F(A)=\int_a^Af(x)\text{d}x\),(\(b\) 瑕点)定义瑕积分\(\displaystyle \int_a^bf(x)\text{d}x = \lim_{A\to b^-}F(A)\)

无穷积分的敛散性

定理(Cauchy准则)

\(\displaystyle \int_a^{+\infty}f(x)\text{d}x\) 收敛 \(\Leftrightarrow\)

\[\forall \epsilon > 0,\exists A>a,\forall A',A''>A:\left|\int_{A'}^{A''}f(x)\text{d}x\right|<\epsilon\]
  • \(\displaystyle \int_a^{+\infty}|f(x)|\text{d}x\) 收敛,则称 \(\displaystyle \int_a^{+\infty}f(x)\text{d}x\) 绝对收敛

  • \(\displaystyle \int_a^{+\infty}f(x)\text{d}x\) 收敛,但 \(\displaystyle \int_a^{+\infty}|f(x)|\text{d}x\) 发散,则称 \(\displaystyle \int_a^{+\infty}f(x)\text{d}x\) 条件收敛

定理

  • \(\displaystyle \int_a^{+\infty}f(x)\text{d}x\) 绝对收敛,则 \(\displaystyle \int_a^{+\infty}f(x)\text{d}x\) 收敛

  • \(\displaystyle \int_a^{+\infty}f(x)\text{d}x, \int_a^{+\infty}g(x)\text{d}x\) 绝对收敛,则 \(\displaystyle \int_a^{+\infty}[f(x)\pm g(x)]\text{d}x\) 绝对收敛

  • \(\displaystyle \int_a^{+\infty}f(x)\text{d}x\) 绝对收敛,\(\displaystyle \int_a^{+\infty}f(x)\text{d}x\) 条件收敛,则 \(\displaystyle \int_a^{+\infty}[f(x)\pm g(x)]\text{d}x\) 条件收敛,\(\displaystyle \int_a^{+\infty}|f(x)\pm g(x)|\text{d}x\) 发散

非负函数无穷积分判别法

定理(收敛原理)

\(f(x)\geq 0\),则 \(\displaystyle \int_a^{+\infty}f(x)\text{d}x\) 收敛 \(\Leftrightarrow\)

\[F(A)=\int_a^Af(x)\text{d}x\text{ 在 }[a,+\infty)\text{ 有上界}\]

定理(比较判别法)

\(g(x) \geq f(x) \geq 0\),则

  1. $\displaystyle \int_{a}^{+\infty} g(x) \text{d}x $ 收敛 \(\implies \displaystyle \int_{a}^{+\infty} f(x) \text{d}x\) 收敛

  2. \(\displaystyle \int_{a}^{+\infty} f(x) \text{d}x\) 发散 \(\implies \displaystyle \int_{a}^{+\infty} g(x) \text{d}x\) 发散

定理(极限形式)

\(f(x) \geq 0, g(x) > 0\),且 \(\displaystyle \lim_{x \to +\infty} \frac{f(x)}{g(x)} = l\),则

  1. \(0 < l < +\infty\) 时,\(\displaystyle \int_{a}^{+\infty} f(x) \text{d}x\)\(\displaystyle \int_{a}^{+\infty} g(x) \text{d}x\) 同敛散;

  2. \(l = 0\) 时,\(\displaystyle \int_{a}^{+\infty} g(x) \text{d}x\) 收敛 \(\implies \displaystyle \int_{a}^{+\infty} f(x) \text{d}x\) 收敛;

  3. \(l = +\infty\) 时,\(\displaystyle \int_{a}^{+\infty} g(x) \text{d}x\) 发散 \(\implies \displaystyle \int_{a}^{+\infty} f(x) \text{d}x\) 发散.

定理(\(p\)-判别法)

\(f(x) \geq 0\),且 \(\displaystyle \lim_{x \to +\infty} x^p f(x) = l\),则

  1. \(0 \leq l < +\infty\),且 \(p > 1\) 时,\(\displaystyle \int_{a}^{+\infty} f(x) \text{d}x\) 收敛;

  2. \(0 < l \leq +\infty\),且 \(p \leq 1\) 时,\(\displaystyle \int_{a}^{+\infty} f(x) \text{d}x\) 发散.

A-D判别法

Abel 变换

设有 \(\{a_n\},\{b_n\}\),记 \(A_k=a_1+a_2+\cdots +a_k\),则

\[\sum_{k=1}^n a_kb_k = A_nb_n + \sum_{k=1}^{n-1}A_k(b_k-b_{k+1})\]

积分第二中值定理

\(f \in R[a, b]\),则有

  1. \(g(x)\)\([a, b]\) 上单调减少且 \(g(x) \geq 0\),则 \(\exists \xi \in [a, b]\) 使 \(\displaystyle \int_{a}^{b} f(x) g(x) \text{d}x = g(a) \displaystyle \int_{a}^{\xi} f(x) \text{d}x\)

(Bonnet型)

  1. \(g(x)\)\([a, b]\) 上单调增加且 \(g(x) \geq 0\),则 \(\exists \xi \in [a, b]\) 使 \(\displaystyle \int_{a}^{b} f(x) g(x) \text{d}x = g(b) \displaystyle \int_{\xi}^{b} f(x) \text{d}x\)

(Bonnet型)

  1. \(g(x)\)\([a, b]\) 上单调,则 \(\exists \xi \in [a, b]\) 使 \(\displaystyle \int_{a}^{b} f(x) g(x) \text{d}x = g(a) \displaystyle \int_{a}^{\xi} f(x) \text{d}x + g(b) \displaystyle \int_{\xi}^{b} f(x) \text{d}x\)

(Weierstrass型)

定理(Bonnet型)

\(f \in R[a, b], g(x)\)\([a, b]\) 单调减少,且 \(g(x) \geq 0\),则

\(\exists \xi \in [a, b]\) 使 \(\displaystyle \int_{a}^{b} f(x) g(x) \text{d}x = g(a) \displaystyle \int_{a}^{\xi} f(x) \text{d}x\)

定理(A-D判别法)

\(f, g\) 满足下列两组条件之一:则 \(\displaystyle \int_{a}^{+\infty} f(x) g(x) \text{d}x\) 收敛.

(Abel) \(\displaystyle \int_{a}^{+\infty} f(x) \text{d}x\) 收敛,\(g(x)\)\([a, +\infty)\) 单调有界;

(Dirichlet) \(F(A) = \displaystyle \int_{a}^{A} f(x) \text{d}x\)\([a, +\infty)\) 有界,\(g(x)\)\([a, +\infty)\) 单调且 \(\displaystyle \lim_{x \to +\infty} g(x) = 0\).

瑕积分的敛散性

定理(Cauchy准则)

\(b\) 为瑕点,\(\displaystyle \int_a^bf(x)\text{d}x\) 收敛 \(\Leftrightarrow\)

\[\forall \epsilon > 0,\exists \delta>0,\forall x',x''\in(b-\delta,b):\left|\int_{x'}^{x''}f(x)\text{d}x\right|<\epsilon\]
  • \(\displaystyle \int_a^b|f(x)|\text{d}x\) 收敛,则称 \(\displaystyle \int_a^bf(x)\text{d}x\) 绝对收敛

  • \(\displaystyle \int_a^bf(x)\text{d}x\) 收敛,但 \(\displaystyle \int_a^b|f(x)|\text{d}x\) 发散,则称 \(\displaystyle \int_a^bf(x)\text{d}x\) 条件收敛

定理

  • \(\displaystyle \int_a^bf(x)\text{d}x\) 绝对收敛,则 \(\displaystyle \int_a^bf(x)\text{d}x\) 收敛

  • \(\displaystyle \int_a^bf(x)\text{d}x, \int_a^bg(x)\text{d}x\) 绝对收敛,则 \(\displaystyle \int_a^b[f(x)\pm g(x)]\text{d}x\) 绝对收敛

  • \(\displaystyle \int_a^bf(x)\text{d}x\) 绝对收敛,\(\displaystyle \int_a^bf(x)\text{d}x\) 条件收敛,则 \(\displaystyle \int_a^b[f(x)\pm g(x)]\text{d}x\) 条件收敛,\(\displaystyle \int_a^b|f(x)\pm g(x)|\text{d}x\) 发散

定理(收敛原理)

\(f(x)\geq 0\),则 \(\displaystyle \int_a^bf(x)\text{d}x\) 收敛 \(\Leftrightarrow\)

\[F(A)=\int_a^Af(x)\text{d}x\text{ 在 }[a,b)\text{ 有上界}\]

定理(比较判别法)

\(g(x) \geq f(x) \geq 0\),则

  1. $\displaystyle \int_{a}^b g(x) \text{d}x $ 收敛 \(\implies \displaystyle \int_{a}^b f(x) \text{d}x\) 收敛

  2. \(\displaystyle \int_{a}^b f(x) \text{d}x\) 发散 \(\implies \displaystyle \int_{a}^b g(x) \text{d}x\) 发散

定理(极限形式)

\(b\) 为瑕点,\(f(x) \geq 0, g(x) > 0\),且 \(\displaystyle \lim_{x \to b^-} \frac{f(x)}{g(x)} = l\),则

  1. \(0 < l < +\infty\) 时,\(\displaystyle \int_{a}^b f(x) \text{d}x\)\(\displaystyle \int_{a}^b g(x) \text{d}x\) 同敛散;

  2. \(l = 0\) 时,\(\displaystyle \int_{a}^b g(x) \text{d}x\) 收敛 \(\implies \displaystyle \int_{a}^b f(x) \text{d}x\) 收敛;

  3. \(l = +\infty\) 时,\(\displaystyle \int_{a}^b g(x) \text{d}x\) 发散 \(\implies \displaystyle \int_{a}^b f(x) \text{d}x\) 发散.

定理(\(p\)-判别法)

\(b\) 为瑕点,\(f(x) \geq 0\),且 \(\displaystyle \lim_{x \to b^-} (b-x)^p f(x) = l\),或

\(a\) 为瑕点,\(f(x)\geq 0\),且 \(\displaystyle \lim_{x\to a^+}(x-a)^pf(x)=l\),则

  1. \(0 \leq l < +\infty\),且 \(p < 1\) 时,\(\displaystyle \int_{a}^b f(x) \text{d}x\) 收敛;

  2. \(0 < l \leq +\infty\),且 \(p \geq 1\) 时,\(\displaystyle \int_{a}^b f(x) \text{d}x\) 发散.

含参变量的定积分

函数含参变量的定积分

\(f(x,u)\)\([a,b]\times [\alpha, \beta]\) 上定义,且 \(\forall u\in[\alpha,\beta],\ f(x,u)\) 关于 \(x\)\([a,b]\) 上可积,则称

\[\varphi (u)=\int_a^bf(x,u)\text{d}x\]

为含参变量的定积分,\(u\) 称为参变量

定理(连续性)

\(f (x, u)\)\(I=[a,b]\times[\alpha, \beta]\) 上连续,则

\[\varphi(u)=\int_a^bf(x,u)\text{d}x\]

\([\alpha, \beta]\) 上连续.

  • 积分号下取极限

    \[\lim_{u\to u_0}\int_a^bf(x,u)\text{d}x = \int_a^bf(x,u_0)\text{d}x = \int_a^b\lim_{u\to u_0}f(x,u)\text{d}x\]

定理(交换积分次序)

\(f(x, u) \in C[a, b] \times [\alpha, \beta]\), 则

\[ \int_{\alpha}^{\beta} \left( \int_{a}^{b} f(x, u) \, \text{d}x \right) \text{d}u = \int_{a}^{b} \left( \int_{\alpha}^{\beta} f(x, u) \, \text{d}u \right) \text{d}x \]

\[ \int_{\alpha}^{\beta} \text{d}u \int_{a}^{b} f(x, u) \, \text{d}x = \int_{a}^{b} \text{d}x \int_{\alpha}^{\beta} f(x, u) \, \text{d}u \]
  • 常用积分变换式
\[ \frac{\sin bx - \sin ax}{x} = \int_{a}^{b} \cos xy \, \text{d}y \]
\[ \frac{\arctan bx - \arctan ax}{x} = \int_{a}^{b} \frac{1}{1 + (xy)^2} \, \text{d}y \]
\[ \frac{e^{bx} - e^{ax}}{x} = \int_{a}^{b} e^{xy} \, \text{d}y \]

定理(可导性)

\(f(x, u)\), \(f'_u(x, u) \in C[a, b] \times [\alpha, \beta]\), 则 \(\varphi(u) \in C^{(1)}[\alpha, \beta]\),且

\[ \frac{\text{d}}{\text{d}u} \int_{a}^{b} f(x, u) \, \text{d}x = \int_{a}^{b} \frac{\partial f}{\partial u} (x, u) \, \text{d}x \]

积分限含参变量的定积分

\[ \psi(u) = \int_{a(u)}^{b(u)} f(x, u) \, \text{d}x \]

定理(连续性)

\(f(x, u)\)\(I = [a, b] \times [\alpha, \beta]\) 上连续,又 \(a(u), b(u)\)\([\alpha, \beta]\) 上连续,且 \(a \leq a(u), b(u) \leq b\),则

\[ \psi(u) = \int_{a(u)}^{b(u)} f(x, u) \, \text{d}x \]

\([\alpha, \beta]\) 上连续。

定理(可导性)

\(f(x, u)\), \(f'_u(x, u) \in C[a, b] \times [\alpha, \beta]\), 又

\(a(u), b(u)\)\([\alpha, \beta]\) 上可导,且 \(a \leq a(u), b(u) \leq b\),则

\[ \psi(u) = \int_{a(u)}^{b(u)} f(x, u) \, \text{d}x \]

\([\alpha, \beta]\) 上可导,且

\[ \frac{\text{d}}{\text{d}u} \int_{a(u)}^{b(u)} f(x, u) \, \text{d}x = \int_{a(u)}^{b(u)} f'_u(x, u) \, \text{d}x + f(b(u), u) b'(u) - f(a(u), u) a'(u) \]

含参变量的反常积分

\(f(x, u)\)\([a, +\infty) \times [\alpha, \beta]\) 定义,若对 \(\forall u \in [\alpha, \beta]\)

\[ \int_a^{+\infty} f(x, u) \text{d}x \]

收敛,则称之为 含参变量无穷积分,记为

\[ \varphi(u) = \int_a^{+\infty} f(x, u) \text{d}x, \quad u \in [\alpha, \beta] \]

定理

\(\displaystyle \int_a^{+\infty} f(x, u) \text{d}u\)\([\alpha, \beta]\) 上一致收敛的充要条件是:

\[ \lim_{A \to +\infty} \beta(A) = 0 \]

其中 \(\displaystyle \beta(A) = \sup_{u \in [\alpha, \beta]} \left| \int_A^{+\infty} f(x, u) \text{d}x \right|\)

定理(Cauchy准则)

\(\displaystyle \int_a^{+\infty} f(x, u) \text{d}x\)\([\alpha, \beta]\) 上一致收敛

\[ \iff \quad \forall \epsilon > 0, \exists X > a, \forall A', A'' > X, \forall u \in [\alpha, \beta]: \]
\[ \left| \int_{A'}^{A''} f(x, u) \text{d}x \right| < \epsilon \]

定理(Weierstrass-判别法)

存在 \(p(x) \geq 0\) 使得

  1. \(\forall x \in [a, +\infty), \forall u \in [\alpha, \beta]: |f(x, u)| \leq p(x)\)

  2. \(\displaystyle \int_a^{+\infty} p(x) \text{d}x\) 收敛

\(\displaystyle \int_a^{+\infty} f(x, u) \text{d}x\)\([\alpha, \beta]\) 上一致收敛.

定理 (A-D 判别法)

\(f(x, u), g(x, u)\) 满足下列两组条件之一:

\(\displaystyle \int_a^{+\infty} f(x, u) g(x, u) \text{d}x\)\([\alpha, \beta]\)一致收敛

(Abel) \(\forall u \in [\alpha, \beta], g(x, u)\) 关于 \(x\) 单调,且一致有界\(\displaystyle \int_a^{+\infty} f(x, u) \text{d}x\) 关于 \(u\)\([\alpha, \beta]\)一致收敛

(Dirichlet) \(\forall u \in [\alpha, \beta], g(x, u)\) 关于 \(x\) 单调,且一致趋于 \(0\) \((x \to +\infty)\)\(\displaystyle \int_a^{A} f(x, u) \text{d}x\) 一致有界

Euler 积分