跳转至

Fourier 分析

函数的 Fourier 级数

基本概念

周期延拓

\(f\) 是定义在 \([-l,l]\) 上的函数,令 \(\begin{aligned}F(x) = \begin{cases} f(x-2nl), &(2n-1)l < x < (2n+1)l\\ \dfrac{f(l)-f(-l)}{2}, & x = (2n+1)l \end{cases}\end{aligned}\)

偶延拓与奇延拓

\(f_e(x)=\begin{cases}f(x), &0\leq x\leq l\\f(-x), &-l\leq x < 0\end{cases}\quad f_o(x)=\begin{cases}f(x), &0< x\leq l\\0, &x=0\\-f(-x), &-l\leq x < 0\end{cases}\)

三角函数系的正交性

函数集合 \(\{1, \cos x,\sin x, \cdots ,\cos nx,\sin nx ,\cdots\}\)

  1. \(\displaystyle \frac{1}{\pi}\int_{-\pi}^{\pi}\cos mx\cos nx\text{d}x=\begin{cases}0, &m\neq n\\1, &m=n\neq 0\\2, &m=n=0\end{cases}(m,n=1,2,\dots)\)

  2. \(\displaystyle \frac{1}{\pi}\int_{-\pi}^{\pi}\sin mx\sin nx\text{d}x=\begin{cases}0, &m\neq n\\1, &m=n\end{cases}(m,n=1,2,\dots)\)

  3. \(\displaystyle \frac{1}{\pi}\int_{-\pi}^{\pi}\sin mx\cos nx\text{d}x=0\ (m=1,2,\dots; n=0,1,\dots)\)

周期函数的 Fourier 级数

设在 \([-\pi, \pi]\) 上函数 \(f(x)\) 可展开为三角级数,即

\[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n\cos nx+b_n\sin nx) \]

Fourier 系数公式

\[ \begin{cases} \begin{aligned}a_n=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos nx\text{d}x\end{aligned}, &n=0,1,2,\dots,\\ \begin{aligned}b_n=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin nx\text{d}x\end{aligned}, &n=1,2,\dots. \end{cases} \]
Fourier 级数(F氏级数)
\[ f(x)\sim \frac{a_0}{2}+\sum_{n=1}^{\infty} (a_n\cos nx+b_n\sin nx) \]

"\(\sim\)" 表示级数是由 \(f\) 写出来的,即 \(f\) 收敛到F氏级数

Dirichlet 收敛定理

定理

\(f\)\(2\pi\) 为周期,在 \([-\pi,\pi]\) 上分段可微,则其F氏级数收敛,且

\[ \frac{a_0}{2}+\sum_{n=1}^{\infty} (a_n\cos nx+b_n\sin nx) = \frac{f(x+0)+f(x-0)}{2} \]

正弦和余弦级数

\(f\)\([-\pi,\pi]\) 上可积且绝对可积,且为奇函数,则

\[ \begin{cases} &a_n=0,\\ &\displaystyle b_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f(x)\sin nx\text{d}x = \frac{2}{\pi}\int_{0}^{\pi} f(x)\sin nx\text{d}x \end{cases} \]

\(\displaystyle f(x) \sim \sum_{n=1}^{\infty} b_n \sin nx\)

\(f\)\([-\pi,\pi]\) 上可积且绝对可积,且为偶函数,则

\[ \begin{cases} &\displaystyle a_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f(x)\cos nx\text{d}x = \frac{2}{\pi}\int_{0}^{\pi} f(x)\cos nx\text{d}x,\\ &b_n=0 \end{cases} \]

\(\displaystyle f(x) \sim \sum_{n=1}^{\infty} a_n \cos nx\)

周期为 \(2l\) 函数的F氏级数

\(x=\dfrac{l}{\pi}t\),则 \(g(t)=f(\dfrac{l}{\pi}t)\)\([-\pi,\pi]\) 上可积且绝对可积,故

\[ g(t)\sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n\cos nt+b_n\sin nt) \]
\[ f(x)\sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n\cos \frac{n\pi}{l}x+b_n\sin \frac{n\pi}{l}x) \]

其中 \(\displaystyle a_n=\frac{1}{l}\int_{-l}^{l}f(x)\cos \frac{n\pi}{l}x\text{d}x,\ b_n=\frac{1}{l}\int_{-l}^{l}f(x)\sin \frac{n\pi}{l}x\text{d}x\)

定理

\(f\)\(2l\) 为周期,在 \([-l,l]\) 上分段可微,则其F氏收敛,且

\[ \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n\cos \frac{n\pi}{l}x+b_n\sin \frac{n\pi}{l}x) = \begin{cases} \dfrac{f(x+0)+f(x-0)}{2}, x\in (-l,l)\\ \dfrac{f(-l+0)+f(l-0)}{2}, x=\pm l \end{cases} \]
更一般的形式
\[f(x)\sim \dfrac{a_0}{2} + \sum_{n=1}^{\infty}\left(a_n\cos (\frac{2\pi nx}{T}) + b_n\sin (\frac{2\pi nx}{T})\right)\]

其中,

\[a_0 = \dfrac{2}{T}\int_{-T/2}^{T/2}f(x)\text{d}x\]
\[a_n = \dfrac{2}{T}\int_{-T/2}^{T/2}f(x)\cos (\frac{2\pi nx}{T})\text{d}x\]
\[b_n = \dfrac{2}{T}\int_{-T/2}^{T/2}f(x)\sin (\frac{2\pi nx}{T})\text{d}x\]

F氏级数的复数形式

Euler 公式

\[ \text{e}^{i\theta} = \cos \theta+i\sin\theta \leftrightarrow \cos\theta = \frac{\text{e}^{i\theta} + \text{e}^{-i\theta}}{2},\ \sin\theta = \frac{\text{e}^{i\theta}-\text{e}^{-i\theta}}{2i} \]

可导出 \(f\)复数形式F氏级数.

\[ f(x)\sim \frac{a_0}{2} + \sum_{n=1}^{\infty}\left(\frac{a_n-ib_n}{2}\text{e}^{in\omega x}+\frac{a_n+ib_n}{2}\text{e}^{-in\omega x}\right) \]

其中 \(\omega = \dfrac{\pi}{l}\)基频\(\displaystyle a_n=\frac{1}{l}\int_{-l}^{l}f(x)\cos n\omega x\text{d}x,\ b_n=\frac{1}{l}\int_{-l}^{l}f(x)\sin n\omega x\text{d}x\)

\[ \begin{aligned} f(x)&\sim \frac{a_0}{2} + \sum_{n=1}^{\infty}\left(\frac{a_n-ib_n}{2}\text{e}^{in\omega x}+\frac{a_n+ib_n}{2}\text{e}^{-in\omega x}\right)\\ &\stackrel{\text{def}}{=} F_0+\sum_{n=1}^{\infty}(F_n\text{e}^{in\omega x}+F_{-n}\text{e}^{-in\omega x})=\sum_{n=-\infty}^{\infty}F_n\text{e}^{in\omega x} \end{aligned} \]

其中, \(\begin{aligned} &F_0=\frac{a_0}{2}=\frac{1}{2l}\int_{-l}^{l}f(x)\text{d}x,\\ &F_n=\frac{a_n-ib_n}{2}=\frac{1}{2l}\int_{-l}^{l}f(x)\text{e}^{-in\omega x}\text{d}x\\ &F_{-n}=\overline{F_n} \end{aligned}\)

平方平均收敛

基本概念

\(L^2[a,b] = \{f(x)\mid \text{在 }[a,b]\text{ 上可积且平方可积}\}\)

  • \(L^2[a,b]\) 是一个线性空间

  • 设 $ f, g \in L^2[a, b] $,其内积定义为 $$ \langle f, g \rangle = \int_a^b f(x) g(x) \text{d}x $$ $$ | f | = \sqrt{\langle f, f \rangle} = \sqrt{\int_a^b f^2(x) \text{d}x} $$

  • $ f, g $ 之间的距离 $$ | f - g | = \sqrt{\langle f - g, f - g \rangle} = \sqrt{\int_a^b [f(x) - g(x)]^2 \text{d}x} $$

  • 三角函数系 \(\left\{ \dfrac{1}{\sqrt{2\pi}}, \dfrac{\cos x}{\sqrt{\pi}}, \dfrac{\sin x}{\sqrt{\pi}}, \cdots, \dfrac{\cos nx}{\sqrt{\pi}}, \dfrac{\sin nx}{\sqrt{\pi}}, \cdots \right\}\)

    是 $ L^2[-\pi, \pi] $ 的标准正交系

定义

设 $ f \in L^2[a, b] $,若存在 $ f_n \in L^2[a, b] $ 使得 $$ \lim_{n \to \infty} | f_n - f |^2 = \lim_{n \to \infty} \int_a^b [f_n(x) - f(x)]^2 \text{d}x = 0 $$ 则称 $ f_n $ 平方平均收敛于 $ f $。

Bessel 不等式

\(f\in L^2[-\pi, \pi]\)

  • \(n\) 阶三角多项式 \(\displaystyle g_n(x) = \frac{\alpha_0}{2} + \sum_{k=1}^{n}(\alpha_k\cos kx + \beta_k\sin kx)\)

  • \(n\) 阶 Fourier 多项式(最佳逼近) \(\displaystyle S_n(x) = \frac{a_0}{2} + \sum_{k=1}^{n}(a_k\cos kx + b_k\sin kx)\)

  • \(\forall g_n\in G = \{g_n\}\)\(\|f-S_n(x)\|\leq \|f-g_n(x)\|\)

  • \(\displaystyle \|f-S_n\|^2 = \int_{-\pi}^{\pi} f^2(x)\text{d}x - \pi\left[ \frac{a_0^2}{2} + \sum_{k=1}^n(a_k^2+b_k^2)\right]\)

Bessel 不等式

\(f\in L^2[-\pi, \pi]\),则 \(f\) 的F式系数满足

\[\frac{a_0^2}{2} + \sum_{n=1}^{\infty}(a_n^2+b_n^2) \leq \frac{1}{\pi}\int_{-\pi}^{\pi} f^2(x)\text{d}x\]

推论

\(f \in L^2[-\pi, \pi]\),则级数 \(\displaystyle \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)\)收敛,故 $$ \lim_{n \to \infty} a_n = 0 = \lim_{n \to \infty} b_n, $$

Parseval 等式

平方平均收敛定理

\(f\in L^2[-\pi, \pi]\),则\(\{S_n(x)\}\) 平方平均收敛于 \(f\),即

\[\lim_{n\to \infty} \|f-S_n\|^2 = 0\]

Parseval 等式

\(f\in L^2[-\pi, \pi]\),则 \(f\) 的F式系数满足

\[\frac{a_0^2}{2} + \sum_{n=1}^{\infty}(a_n^2+b_n^2) = \frac{1}{\pi}\int_{-\pi}^{\pi} f^2(x)\text{d}x\]

推论

  1. \(f \in C[-\pi, \pi]\),且 \(f\) 与三角函数系

    \[ \left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \cdots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{\pi}}, \cdots \right\} \]

    中的每一个都正交,则 \(f(x) \equiv 0\)

    • \(f, g \in C[-\pi, \pi]\),且F氏系数相等,则 \(f(x) \equiv g(x)\)
  2. \(f, g \in L^2[-\pi, \pi]\),其F氏系数分别为 \(a_n, b_n\)\(\overline{a_n}, \overline{b_n}\),则

    \[ \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) \text{d}x = \frac{a_0 \overline{a_0}}{2} + \sum_{n=1}^{\infty} (a_n \overline{a_n} + b_n \overline{b_n}) \]
  3. \(f \in L^2[-\pi, \pi]\),其 Fourier 级数为

    \[ f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \]

    则对 \(\forall [a, b] \subset [-\pi, \pi]\),有

    \[ \int_a^b f(x) \text{d}x = \int_a^b \frac{a_0}{2} \text{d}x + \sum_{n=1}^{\infty} \int_a^b (a_n \cos nx + b_n \sin nx) \text{d}x \]

广义 Fourier 级数

基本概念

\(\{\varphi_1(x), \varphi_2(x),\cdots,\varphi_n(x),\cdots\}\)\(L^2[a,b]\) 的标准正交系,即

\[\displaystyle \langle \varphi_m(x),\varphi_n(x)\rangle = \int_a^b \varphi_m(x)\varphi_n(x)\text{d}x = \begin{cases}0, &m\neq n\\1, &m=n\end{cases}\]
  • 广义F氏系数 \(\displaystyle a_n = \int_a^b f(x)\varphi_n(x)\text{d}x\)

  • 广义F氏级数 \(\displaystyle f(x) \sim \sum_{n=1}^{\infty} a_n\varphi_n(x)\)

\(f\in L^2[a,b], \{\varphi(x)\}\) 为标准正交系,

  • \(n\)\(\varphi\)-多项式 \(\displaystyle T_n(x) = \sum_{k=1}^n\alpha_k\varphi_k(x)\)

  • 广义F氏级数前 \(n\) 项和(最佳逼近) \(S_n(x) = \sum_{k=1}^na_k\varphi_k(x)\)

  • \(\|f-S_n\|\leq \|f-T_n\|\)

  • \(\displaystyle \|f-S_n\|^2 = \|f\|^2 - \sum_{m=1}^{\infty}a_m^2\)

  • \(\displaystyle \sum_{m=1}^{\infty}a_m^2\leq \|f\|^2\)

定义

  • \(\{\varphi_n(x)\}\)\(L^2[a, b]\) 的标准正交系,且

$$ \sum_{m=1}^{\infty} a_m^2 = |f|^2 $$

则称 \(\{\varphi_n(x)\}\)\(L^2[a, b]\)完备标准正交系。

定理

\(\{\varphi_n(x)\}\)\(L^2[a, b]\) 的完备标准正交系,则 $$ S_n(x) = \sum_{k=1}^n a_k \varphi_k(x) $$

平方平均收敛于 \(f\),即 $$ \lim_{n \to \infty} | f - S_n | = 0 $$

定理

\(\{\varphi_n(x)\}\)\(L^2[a, b]\) 的完备标准正交系,则

  1. \(f \in C[a, b]\),则 \(f(x) \equiv 0\) 当且仅当 \(f\) 的广义F氏系数\(a_n = 0, (n = 1, 2, \ldots)\)

  2. \(\{\varphi_n(x)\}\) 中删去任一函数,则剩余函数系不完备;

  3. \(\displaystyle\int_a^b \varphi_0^2(x) \text{d}x = 1\),则 \(\{\varphi_n(x)\}\) 增加 \(\varphi_0(x)\) 所得函数系非正交系。

Fourier 变换

Fourier 积分

回顾 F氏级数的复数形式

\(\lambda_n = \dfrac{n\pi}{l}, \Delta\lambda = \lambda_n-\lambda_{n-1}=\dfrac{\pi}{l}\)

\(f\)\(\mathbb{R}\) 的任意有限区间分段可微,且在 \((-\infty,+\infty)\) 上绝对可积1,则有对任意 \(x\in \mathbf{R}\)

\[\frac{1}{2\pi}\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty}f(t)e^{-i\lambda t}\text{d}t\right]e^{i\lambda x}\text{d}\lambda = \frac{f(x+0)+f(x-0)}{2}\]

特别地,若 \(f\)\(x\) 处连续,则

\[\frac{1}{2\pi}\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty}f(t)e^{-i\lambda t}\text{d}t\right]e^{i\lambda x}\text{d}\lambda = f(x)\]

Fourier 变换

\(f\) 满足定理条件且连续,称函数

\[F(\lambda) = \int_{-\infty}^{+\infty}f(t)e^{-i\lambda t}\text{d}t\]

\(f\) 的 Fourier变换;而函数

\[f(x) = \frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\lambda)e^{i\lambda x}\text{d}\lambda\]

称为 \(F(\lambda)\) 的 Fourier 逆变换,上式称为反演公式

实形式 Fourier 积分

\(f\)\(\mathbb{R}\) 上连续时,有

\[\begin{aligned} f(x) &= \frac{1}{\pi}\int_0^{+\infty}\text{d}\lambda\int_{-\infty}^{+\infty}f(t)\cos\lambda(x-t)\text{d}t\\ &\stackrel{\text{def}}{=}\int_0^{+\infty}\left[a(\lambda)\cos\lambda x+b(\lambda)\sin\lambda x\right]\text{d}\lambda \end{aligned}\]

其中 \(\displaystyle a(\lambda) = \frac{1}{\pi}\int_{-\infty}^{+\infty}f(t)\cos\lambda t\text{d}t\quad b(\lambda) = \frac{1}{\pi}\int_{-\infty}^{+\infty}f(t)\sin\lambda t\text{d}t\)

正弦和余弦变换

\( f \) 为奇函数,其 Fourier 变换

\[ f(x) \rightarrow F_o(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i \lambda t} \text{d}t = -2i \int_{0}^{+\infty} f(t)\sin(\lambda t) \text{d}t \]

\(\displaystyle G_o(\lambda) = i F_o(\lambda) = 2 \int_{0}^{+\infty} f(t)\sin(\lambda t) \text{d}t\)\(f\)正弦变换,其逆变换为

\[ G_o(\lambda) \rightarrow f(x) = \frac{1}{\pi} \int_{0}^{+\infty} G_o(\lambda)\sin(\lambda x) \text{d}\lambda \]

\( f \) 为偶函数,其 Fourier 变换

\[ f(x) \rightarrow F_e(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i \lambda t} \text{d}t = 2 \int_{0}^{+\infty} f(t)\cos(\lambda t) \text{d}t \]

称为余弦变换,其逆变换为

\[ F_e(\lambda) \rightarrow f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F_e(\lambda)e^{i \lambda x} \text{d}\lambda = \frac{1}{\pi} \int_{0}^{+\infty} F_e(\lambda)\cos(\lambda x) \text{d}\lambda \]

性质

\(f\) 的 Fourier 变换为 \(F[f]\),即

\[F[f](\lambda) = F(\lambda) = \int_{-\infty}^{+\infty}f(t) e^{-i\lambda t}\text{d}t\]

线性性

\[F[\alpha f+\beta g] = \alpha F[f]+\beta F[g]\quad \alpha,\beta\in\mathbb{R}\]

频移性

\[F[f(x)e^{-i\lambda_0x}](\lambda) = F(\lambda + \lambda_0)\]

微分关系

\(f(\pm\infty)=0,f'\) 存在 Fourier 变换,则

\[F[f'] = i\lambda\cdot F[f]\]

微分特性

\(f\)\(xf(x)\) 存在 Fourier 变换,则

\[F'(\lambda) = F[-ixf(x)]\]

卷积

\(f,g\)\(\mathbb{R}\) 上绝对可积,则 \(f\)\(g\) 的卷积

\[(f\ast g)(x)\stackrel{\text{def}}{=}\int_{-\infty}^{+\infty}f(x-t)g(t)\text{d}t\]
  • \(f\ast g=g\ast f\)

  • \((f\ast g)\ast h=f\ast (g\ast h)\)

  • \((f+g)\ast h=f\ast h+g\ast h\)

  • \(F[f\ast g] = F[f]\cdot F[g]\)

Parseval 等式

\(f\) 可积且平方可积,\(F(\lambda)\)\(f\) 的F氏变换,则有

\[\int_{-\infty}^{+\infty}f^2(t)\text{d}t=\frac{1}{2\pi}\int_{-\infty}^{+\infty}|F(\lambda)|^2\text{d}\lambda\]

  1. 即积分在 \((-\infty,\infty)\) 上收敛 

评论