多元函数微分学¶
基本概念¶
-
邻域 \(B(M_0,r) = \{M\mid \rho(M,M_0)<r\}\)
-
内点,核\(E^\circ\)、外点 \((E^c)^\circ\)、边界点,边界 \(\partial E\)
-
内点 \(+\) 非孤立边界点 \(=\) 聚点,导集\(E'\)
-
\(E=E^\circ \Rightarrow\) 开集 \(\leftrightarrow\) 闭集
多变量函数的极限¶
二重极限¶
累次极限¶
性质¶
连续性¶
可偏导¶
可微¶
或
其中 \(\Delta f = f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)\)
隐函数¶
多元隐函数¶
\(F(x_0,y_0,z_0) = 0, z = f(x,y)\)
\(\dfrac{\partial z}{\partial x} = -\dfrac{F_x'}{F_z'},\ \dfrac{\partial z}{\partial y} = -\dfrac{F_y'}{F_z'},\ F_z'\neq 0\)
隐映射存在定理¶
\(F(x_0,y_0,u_0,v_0) = 0, G(x_0,y_0,u_0,v_0) = 0\),且在某一邻域存在连续的偏导数
则 \(\begin{cases}F(x,y,u,v)=0\\G(x,y,u,v)=0\end{cases}\) 可唯一确定隐映射 \(\begin{cases}u=u(x,y)\\v=v(x,y)\end{cases}\)
逆映射存在定理¶
则
在 \(B(u_0, v_0)\) 存在逆映射 \(\begin{cases}x = x(u, v) \\y = y(u, v)\end{cases}\) 满足 \(\begin{cases}x_0 = x(u_0, v_0) \\y_0 = y(u_0, v_0)\end{cases}\)
且有连续偏导数
Taylor 公式和极值¶
Taylor 公式¶
Taylor公式
设函数 \( f(x, y) \) 在 \( B(P_0(x_0, y_0)) \) 有 \( n+1 \) 阶连续偏导数,则 \(\exists \theta \in (0, 1) \):
其中 Lagrange 型余项
极值¶
驻点¶
\(f_x'(x_0,y_0)=0=f_y'(x_0,y_0)\),则 \(f(x_0,y_0)\) 为驻点
极值点¶
设 \(f(x, y)\) 在 \(B(P_0(x_0, y_0))\) 的二阶偏导数连续,且 \(f'_x(x_0, y_0) = 0, \quad f'_y(x_0, y_0) = 0\)
记 Hesse 矩阵
-
若 \(H\) 为正定矩阵,则 \(f(x_0, y_0)\) 为严格极小值
-
若 \(H\) 为负定矩阵,则 \(f(x_0, y_0)\) 为严格极大值。
-
若 \(H\) 为不定矩阵,则 \(f(x_0, y_0)\) 非极值。
条件极值(Lagrange乘数法)¶
向量场的微商¶
-
Hamilton 算子 \(\nabla = \dfrac{\partial}{\partial x}\bm{i} + \dfrac{\partial}{\partial y}\bm{j} + \dfrac{\partial}{\partial z}\bm{k}\)
-
Laplace 算子 \(\Delta = \nabla \cdot \nabla = \dfrac{\partial^2}{\partial x^2} + \dfrac{\partial^2}{\partial y^2} + \dfrac{\partial^2}{\partial z^2}\)
梯度、散度与旋度¶
设有函数 \(u=u(x,y,z)\)
- \(u\) 的梯度 \(|\textbf{grad }u| = |\nabla u| = |u_x'\bm{i} + u_y'\bm{j} + u_z'\bm{k}|\)
设有向量场 \(\bm{v}(x,y,z) = P\bm{i} + Q\bm{j} + R\bm{k}\)
-
\(\bm{v}\) 的散度 \(\text{div }\bm{v}\stackrel{\text{def}}{=}\nabla \cdot \bm{v} = \dfrac{\partial P}{\partial x} + \dfrac{\partial Q}{\partial y} + \dfrac{\partial R}{\partial z}\)
-
\(\bm{v}\) 的旋度 \(\textbf{rot }\bm{v}\stackrel{\text{def}}{=}\nabla \times \bm{v} = \begin{vmatrix} \bm{i} & \bm{j} & \bm{k}\\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\\ P & Q & R \end{vmatrix}\)
-
\(\textbf{rot grad }\varphi = \nabla \times \nabla \varphi = \bm{0}\)
-
\(\text{div }\textbf{rot }\bm{v} = \nabla \cdot \nabla \times \bm{a} = 0\)